A Sobolev Gradient Method for Treating the Steady-state Incompressible Navier-Stokes Equations
نویسنده
چکیده
The velocity-vorticity-pressure formulation of the steady-state incompressible Navier-Stokes equations in two dimensions is cast as a nonlinear least squares problem in which the functional is a weighted sum of squared residuals. A finite element discretization of the functional is minimized by a trust-region method in which the trust-region radius is defined by a Sobolev norm and the trust-region subproblems are solved by a dogleg method. Numerical test results show the method to be effective. MSC: 65N30
منابع مشابه
Turbulent Flow over Cars
In this paper the flow behaviour over a number of car bodies is studied. For this purpose the unsteady 2-D incompressible Navier-Stokes equations have been applied. After averaging and nondimensionalizing the equations, the system of equations has been transformed from the Cartesian (x-y) coordinates to a body fitted generalized (-) coordinate. As the flow is incompressible, the density in the ...
متن کاملIncompressible laminar flow computations by an upwind least-squares meshless method
In this paper, the laminar incompressible flow equations are solved by an upwind least-squares meshless method. Due to the difficulties in generating quality meshes, particularly in complex geometries, a meshless method is increasingly used as a new numerical tool. The meshless methods only use clouds of nodes to influence the domain of every node. Thus, they do not require the nodes to be conn...
متن کاملPreconditioners for the Steady Incompressible Navier-Stokes Problem
In this paper we discuss preconditioners for the incompressible Navier-Stokes equations. In combination with Krylov subspace methods, they give a fast convergence for the solution of the Navier -Stokes equations. With the help of numerical experiments, we report some new findings regarding the convergence of these preconditioners. Besides that, a renumbering scheme for direct solvers and ILU pr...
متن کاملDiscrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations
Two discrete functional analysis tools are established for spaces of piecewise polynomial functions on general meshes: (i) a discrete counterpart of the continuous Sobolev embeddings, in both Hilbertian and non-Hilbertian settings; (ii) a compactness result for bounded sequences in a suitable Discontinuous Galerkin norm, together with a weak convergence property for some discrete gradients. The...
متن کاملA new paradigm for solving Navier–Stokes equations: streamfunction–velocity formulation
In this paper, we propose a new paradigm for solving Navier–Stokes equations. The proposed methodology is based on a streamfunction–velocity formulation of the two-dimensional steady-state Navier–Stokes equations representing incompressible fluid flows in two-dimensional domains. Similar formulations are also possible for three-dimensional fluid flows. The main advantage of our formulation is t...
متن کامل